
INDEXING OF MOVING OBJECTS

Petr Částek
Doctoral Degree Programme (1), FIT BUT

E-mail: xcaste01@stud.fit.vutbr.cz

Supervised by: Jaroslav Zendulka
E-mail: zendulka@fit.vutbr.cz

ABSTRACT

With the recent advances in wireless networks, embedded systems, and GPS technology,
databases that manage the location of moving objects have received increased interest.
In particular, we propose methods to index moving objects in order to efficiently answer
range queries about their current and future positions. We address the problem in external
memory and present dynamic solutions, both for the one-dimensional and the two-dimensi-
onal cases. Our approach transforms the problem into a dual space that is easier to index.

1. INTRODUCTION

A spatiotemporal database system manages data whose geometry changes over time. There
are many applications that create such data including global change (as in climate or land
cover changes), transportation (traffic surveillance data, intelligent transportation systems),
social (demographic, health,etc.), and multimedia (animated movies) applications. In gene-
ral, one could consider two spatial attributes of spatiotemporal objects that are time depen-
dent, namely, position (i.e., the object’s location inside some reference space) and extent
(i.e., the area or volume the object occupies in the reference space).

The usual assumption in traditional database management systems is that data stored in the
database remain constant until explicitly changed by an update. This model is appropriate
when data change in discrete steps, but it is inefficient for applications with continuously
changing data. A better approach is to abstract each object’s location as a function of time
f(t) and update the database only when the parameters of f change (for example when the
speed or the direction of a car changes). Using f(t) the “motion” database can compute the
location of the mobile object at any time in the future. While this approach minimizes the
update overhead, it introduces a variety of novel problems (such as the need for appropria-
te data models, query languages, and query-processing and optimization techniques) since
the database is storing not data values but rather functions to compute these values [1].

2. ANALYSIS

These motion database problems have recently attracted the interest of the research com-
munity. Sistla et al. and Wolfson et al. [1] present the Moving Objects Spatio-Temporal
(MOST) model and a language (FTL) for querying the current and future locations of mo-

bile objects; Guting et al. propose a model that tracks and queries the history (past routes)
of mobile objects based on new spatiotemporal data types. Another spatiotemporal model
appears in [1]. Spatiotemporal queries about mobile objects have important applications in
traffic monitoring, intelligent navigation or mobile communication. For example, in mobile
communication systems, we could allocate more bandwidth in areas where a high concent-
ration of mobile phones is approaching.

Another important issue in spatiotemporal databases is related to the protection of the
privacy of mobile users. Recent directives and regulations, such as the European directive
58/2002/EC, specify that the location information of mobile users constitutes sensitive
private information and must be protected against unauthorized use. Another approach is to
allow only aggregate queries (COUNT, SUM, AVG) that do not reveal object IDs [1].

2.1. THE DUAL SPACE-TIME REPRESENTATION

In general, the dual transformation is a method that maps a hyperplane h from Rd to a
point in Rd and vice versa. In this section we briefly describe how we can address the
problem at hand in a more intuitive way by using the dual transform for the one-dimensio-
nal case. Specifically, a line from the primal plane (t,y) is mapped to a point in the dual
plane. A class of transforms with similar properties may be used for the mapping. The
problem setting parameters determine which one is more useful. One dual transform for
mapping the line with equation y(t) = vt + a to a point in R2 is to consider the dual plane
where one axis represents the slope of an object’s trajectory (velocity) and the other axis its
intercept (Fig. 1). Thus we get the dual point (v,a) (this is called Hough-X transform in
[1]). Similarly, a point p = (t,y) in the primal space is mapped to line a(v) = −tv+y in the
dual space. An important property of the duality transform is that it preserves the above-
below relationship. As is shown in Fig. 1, the dual line of point p is above the dual point l∗

of line l.

Fig. 1.: Hough-X dual transformation: primal plane (left), dual plane (right).

Based on the above property, it is easy to show that the one-dimensional query
[(y1q , y2q), (t 1q , t 2q)] becomes a polygon in the dual space. Consider a point
moving with positive velocity. Then the trajectory of this point intersects the query if and
only if it intersects the segment defined by the points p1 = (t 1q , y2q) and

p2 = (t 2q , y1q). Thus, the dual point of the trajectory must be above the dual line
p2
∗ and below p1

∗ . The same idea is used for the negative velocities. Therefore, using

a linear constraint query, the query Q in the dual Hough-X plane is expressed in the
following way:

● If v0 then Q=C1∧C2 where C1=at 2q
v≥ y1q

and C2=at 1q
v≤ y2q

.

● If v0 then Q=D1∧D2 where D1=at 1q
v≥ y1q

and D2=at 2q
v ≤ y 2q

.

By rewriting the equation y t=vta as t=1/v y – A/V , we can arrive at a different
dual representation. Now the point in the dual plane has coordinates (b,n), where

b=−A/V and n=1/V (Hough-Y). Coordinate b is the point where the line intersects
line y = 0 in the primal space. By using this transform, horizontal lines cannot be repre-
sented. Similarly, the Hough-X transform cannot represent vertical lines. Therefore, for
static objects, we can use only the Hough-X transform [1].

3. INDEXING IN ONE DIMENSION

In this section we illustrate techniques for the one-dimensional case, i.e., for objects
moving on a line segment. There are various reasons for examining the one-dimensional
case. First, the problem is simpler and can give good intuition about the various solutions.
It is also easier to prove lower bounds and approach optimal solutions for this case. More-
over, it can have practical uses as well. A large highway system can be approximated as a
collection of smaller line segments (this is the 1.5-dimensional problem) [1].

3.1. A LOWER BOUND

By using the dual space-time representation, the problem of indexing moving objects on a
line is transformed into the problem of simplex range searching in two dimensions. In
simplex range searching we are given a set S of points in two dimensions, and we want to
answer efficiently queries of the following form: “Given a set of linear constraints ax ≤ b,
find all points in S that satisfy all the constraints.” Geometrically, we want to find the
points in the interior of the polygon. They show that simplex reporting in d-dimensions
with a query time of O  N δK  , , where N is the number of points, K is the number of
reported points, and 0 < δ ≤ 1, requires space Ω N d 1−δ−ε for any fixed .

The bound holds for the static case, even if the query region is the intersection of just two
hyperplanes. Since can be arbitrarily small, any algorithm that uses linear space for d-di-
mensional range searching has a worst-case query time of O N d−1 /dK  . . Here we
show that a similar bound holds for the I/O complexity of simplex searching. We use the
external memory pointer machine as our model of computation. This is a generalization of
the pointer machine suitable for analyzing external memory algorithms. In this model, a
data structure is modeled as a directed graph G = (V,E) with a source w. Each node of the
graph represents a disk block and is therefore allowed to have B data and pointer fields.
The points are stored in the nodes of G. Given a query, the algorithm traverses G starting
from w, examining the points at the nodes it visits. The algorithm can only visit nodes that
are neighbors of already visited nodes (with the exception of the root) and, when it termi-
nates the answer to the query, must be contained in the set of visited nodes. The running
time of the algorithm is the number of nodes it visits.

3.2. OPTIMAL SOLUTION

Matousek [3] gave a near optimal algorithm for simplex range searching, given a static set
of points. This main-memory algorithm is based on the idea of simplicial partitions. We

briefly describe this approach. For a set S of N points, a simplicial partition of S is a set
{(S1, Δ1). . . (Sr, Δr)}, where {S1,. . . , Sr} is a partitioning of S and Δi is a triangle that
contains all the points in Si . If maxi|Si| < 2mini|Si|, where |Si| is the cardinality of the set Si,
we say that the partition is balanced. Matousek shows that, given a set S of N points and a
parameter s (where 0 < s < N/2), we can construct, in linear time, a balanced simplicial
partition for S of size O(s) such that any line crosses at most O(s) triangles in the partition.

This construction can be used recursively to construct a partition tree for S. The root of the
tree contains the whole set S and a triangle that contains all the points. We find a balanced
simplicial partition of S of size ∣S∣ . Each of the children of the root are associated with
a set Si from the simplicial partition and the triangle Δi that contains the points in Si . For
each of the Si’s we find simplicial partitions of size ∣S∣ and continue until each leaf
contains a constant number of points. The construction time is O  N log 2 N  [1].

3.3. BUILDING THE INDEX

We begin by decomposing the motion in (x, y, t) space into two motions on the (t, x) and
(t, y) plane. An outline of the procedure for building the index follows:

 1. Decompose the two-dimensional motion into two one dimensional motions on the (t,x)
and (t,y) planes.

 2. For each projection, build the corresponding index structure.

 • Partition the objects according to their velocity:

(a) Objects with |v| < VT are stored using the Hough-X dual transform, while ob-
jects with |v| ≥ VT are stored using the Hough-Y dual transform.

(b) Motion information about the other projection is also included in each point.

In order to choose one of the two projections and answer the simplex query [1].

4. BDUAL-TREE

A Bdual-tree has two parameters: a horizon H, and a reference time Tref . H decides the
farthest future time that can be efficiently queried. Similar to TPR-trees [1], a Bdual-tree
constructed at time t optimizes queries about the period [t,t+H]. Queries that concern ti-
mestamps later than t + H are also correctly answered, but they are not optimized due to
their lower importance (predicting about a distant timestamp is not useful since many ob-
jects may have issued updates by then). The second parameter Tref is needed to convert data
to their duals. The Tref is not necessarily equal to the construction time of the tree.

Bdual-tree is composed of two B+-trees, BT1 and BT2 . Each tree has two states:

● a growing state when objects can be inserted/deleted

● a shrinking state when only deletions are allowed

At any time, one tree is in the growing state, and the other in the shrinking state. Initially,
BT1 (BT2) is in the growing (shrinking) state for time interval [0,T), when all the updates
are directed to BT1 , and BT2 remains empty. During [T,2T), the states of BT1 and BT2 are
reversed. In this period, every insertion is performed in BT2. A deletion, however, may
remove an object from BT1 or BT2 , depending on whether it was inserted during [0,T) or
[T,2T), respectively. At time 2T, BT1 becomes empty (all the objects inserted during [0,T)

have issued updates), and the two trees switch states again. Given a query, both BT1 and
BT2 are searched, and the results are combined to produce the final answer [2].

5. CONCLUSIONS

We presented external memory techniques for indexing moving objects in order to effi-
ciently answer range queries about their location in the future. By employing dual transfor-
mations we illustrated efficient indexing schemes for the one-dimensional (moving on a
line) as well as the two-dimensional case. less update cost. Updating is an important consi-
deration given the highly dynamic environment of moving objects. Moreover, the duality
approach does not require the specification of a predefined horizon. An interesting directi-
on of future research is joins among relations of mobile objects. We proposed the Bdual-tree,
a new spatiotemporal index for predictive search that combines features and advantages of
state-of-the-art methods. Furthermore, it would be worth considering the problem in the
context of uncertainty in the position and velocity of the mobile objects. The relationship
of indexing techniques and protection of privacy of mobile users is also a very interesting
problem that we plan to consider.

REFERENCES

[1] KOLLIOS, George, PAPADOPOULOS, Dimitris, GUNOPULOS, Dimitrios. Inde-
xing mobile objects using dual transformations. The VLDB Journal : Digital Object
Identifier (DOI). 2005, no. 14, s. 238-256.

[2] YIU, Man Lung, TAO, Yufei, MAMOULIS, Nikos. The Bdual-tree: indexing moving
objects by space filling curves in the dual space . The VLDB Journal. 2008, no. 17, s.
379-400.

[3] MATOUŠEK, J. Efficient partition trees. Discrete Computer Geometrics . 1992, č. 8,

s. 432-448. Available from www:

<http://www.mpi-inf.mpg.de/~sgovinda/Course/papers/M92.pdf>.

[4] ARGE, Lars, SAMOLADAS, Vasilis, VITTER, Jeffrey. On two-dimensional inde-
xability and optimal range search indexing. Proceedings of the 18th ACM PODS.

1999, s. 346-357. Available from www:

<http://www.daimi.au.dk/~large/Papers/rangepods99.ps>.

http://www.mpi-inf.mpg.de/~sgovinda/Course/papers/M92.pdf
http://www.daimi.au.dk/~large/Papers/rangepods99.ps

	1.IntroduCtion
	2.Analysis
	2.1. The dual space-time representation

	3. Indexing in one dimension
	3.1. A lower bound
	3.2. Optimal solution
	3.3. Building the index

	4.Bdual-TREE
	5.conclusions

